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Abstract

A hybrid Finite Element Method (FEM)/Method of Moments (MoM) technique in

conjunction with the Asymptotic Waveform Evaluation (AWE) technique is applied to obtain

radar cross section (RCS) of a cavity-backed aperture in an infinite ground plane over a

frequency range. The hybrid FEM/MoM technique when applied to the cavity-backed aperture

results in an integro-differential equation with electric field as the unknown variable, the electric

field obtained from the solution of the integro-differential equation is expanded in Taylor series.

The coefficients of the Taylor series are obtained using the frequency derivatives of the integro-

differential equation formed by the hybrid FEM/MoM technique. The series is then matched via

the Pad  approximation to a rational polynomial, which can be used to extrapolate the electric

field over a frequency range.  The RCS of the cavity-backed aperture is calculated using the

electric field at different frequencies. Numerical results for a rectangular cavity, a circular

cavity, and a material filled cavity are presented over a frequency range. Good agreement

between AWE and the exact solution over the frequency range is obtained.

e′
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1. Introduction

The electromagnetic characterization of cavity backed apertures is of importance in

understanding the scattering properties and in electromagnetic penetration/coupling studies.

Recently, there has been a considerable interest in analyzing cavity backed apertures in an

infinite ground plane. Various analytical and numerical techniques have been applied for two

dimensional cavity backed apertures [1-6]. For three dimensional problems, mode matching has

been used for rectangular [7] and spherical [8] cavity backed apertures. A Method of Moments

(MoM)/modal [9] approach is used recently to analyze apertures formed by a rectangular cavity

recessed in a ground plane. These methods are restricted to cavities with regular shapes, where

fields can be written in modal form. In [10], a boundary integral method is used to analyze the

scattering from three dimensional cavities via a connection scheme. Though useful for savings

in computer memory, this method leads to dense matrices. Also, the accumulation errors due to

the connection algorithm are not negligible as the number of subsections increase. In the case of

deep cavities, high frequency techniques such as those proposed in [11] and [12] could be

effectively implemented. Unfortunately, these techniques are not suitable when the cavity is

filled with inhomogeneous materials. In [13], a Finite Difference Time Domain (FDTD) method

is applied for large structures. However, the method of FDTD sometimes results in inaccurate

results due to differencing, staircasing and dispersion. Jin and Volakis [14] used a finite element-

boundary integral formulation which employs the boundary integral equation (or Method of

Moments-MoM)  to formulate the fields external to the cavity accurately.

In the combined FEM/MoM technique, FEM is used in the cavity volume to compute the

electric field, whereas MoM is used to compute the magnetic current at the aperture. For the

combined FEM/MoM technique, the cavity is divided into tetrahedral elements and the aperture
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is discretized by triangles. Using the Galerkin’s technique, simultaneous equations are generated

over the subdomains and are added to form a global matrix equation. This results in a partly

sparse and partly dense, symmetric complex matrix, which can be solved either by a direct

solver or by an iterative solver. The electric field hence obtained is used to compute the RCS of

the cavity-backed aperture.

To obtain RCS over a range of frequencies using the combined FEM/MoM technique, one

has to repeat the calculations over the frequency range of interest. If the RCS is highly frequency

dependent, one needs to do the calculations at the finer increments of frequency to get the

accurate representation of the frequency response. This can be computationally intensive and for

an electrically large cavity with electrically large aperture, it can be computationally prohibitive

despite the increased power of the present generation of computers. To alleviate the above

problems, the application of Asymptotic Waveform Evaluation (AWE) has been proposed for the

timing analysis of VLSI circuits [15]. The AWE technique is finding increasing interest in

electromagnetic analysis of microwave circuits [16-18]. Recently a detailed description of AWE

applied to frequency domain electromagnetic analysis is presented in [19]. AWE has  been used to

predict RCS of PEC bodies over a frequency range [20] and input characteristics of a

cavity-backed aperture antenna over a frequency range [21].

In this report, the application of AWE for predicting the RCS over a range of frequencies

for a cavity-backed aperture using a combined FEM/MoM technique is described. In the AWE

technique, the electric field is expanded in a Taylor series around a frequency. The coefficients of

the Taylor series (called ‘moments’) are evaluated using the frequency derivatives of the

combined FEM/MoM equation. These moments are then matched via the Pad  approximation to

a rational polynomial. Using the rational polynomial,  the electric field distribution in the cavity

e′
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can be obtained over a frequency range. Using this field distribution, the RCS of the

cavity-backed aperture in an infinte ground plane is calculated at any frequency within the

frequency range.

The rest of the report is organized as described below. A brief description of hybrid

FEM/MoM technique to calculate RCS from a cavity-backed aperture is given in section 2. In

section 3, AWE implementation for the combined FEM/MoM technique is described. Numerical

results for a rectangular cavity, a circular cavity, and a material filled cavity are presented in

section 4. The numerical data are compared with the exact solution (calculated at each frequency

using the hybrid FEM/MoM technique)  over the frequency range. CPU time and storage

requirements for AWE formulation are given for each example and are compared with those

required for exact solution at each frequency. Concluding remarks on the AWE technique are

presented in section 5.
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2. Hybrid FEM/MoM Technique

The geometry of the problem to be analyzed is shown in figure 1. For linear, isotropic, and

source free region, the electric field satisfies the vector wave equation:

(1)

where ,  are the relative permeability and relative permittivity of the medium in the cavity

andk is the free space wavenumber. The time variation  is assumed and suppressed

throughout this paper. The electric field  is solved via hybrid FEM/MoM technique assuming

that cavity-backed aperture is illuminated by a harmonic plane wave, . Following the proce-

dure described in [14], equation (1) can be written as

(2)

whereT is the vector testing function.  is the aperture surface (see figure 1).  is the

scattered magnetic field and  at .

The volume of the cavity is subdivided into small volume tetrahedral elements. The

electric field is expressed in terms of the edge vector basis functions [22], which enforce the

divergenceless condition of the electric field explicitly. The vector testing function is also

expressed in terms of the edge vector basis functions following the Galerkin’s method. The

discretization of the cavity volume into tetrahedral elements automatically results in discretization

of the surface   into triangular elements. The volume and surface integrals in equation (2) are

carried out over each element to form element matrices, which are assembled to form global

matrices. Equation (2) can be written in matrix form as

1
µr
----- E∇× 

  k
2εrE–∇× 0=

µr εr

jωt( )exp

E

H inc

T∇×( ) 1
µr
----- E∇× 

  dv•
V
∫∫∫ ko

2
– εr T Edv jωµo T n̂×( ) Hscatds•

Sap

∫∫–•
V
∫∫∫

2jωµo T n̂×( ) H incds•
Sap

∫∫=

Sap Hscat

n̂ ẑ= Sap

Sap
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(3)

 is a partly sparse, partly dense complex symmetric matrix,b(k) is the excitation vector, and

e(k) is the unknown electric field coefficient vector.A(k) is evaluated as a sum of three matrices.

(4)

where

(5)

(6)

(7)

(8)

Equations (6) and (7) are obtained by making use of the equivalence principle and image theory

[23] and follow the procedure given in [24].  andR is the distance between source

point and the observation point.M  is the equivalent magnetic current over the aperture .

indicates del operation over the source coordinates and  indicates the surface integration over

the source region. Equation (8) is calculated assuming a harmonic plane wave

(9)

(10)

where

A k( ) e k( ) b k( )=

A k( )

A k( ) A1 k( ) A2 k( ) A3 k( )+ +=

A1 k( ) T∇×( ) 1
µr
----- E∇× 

  dv•
V
∫∫∫ k

2
– εr T Edv•

V
∫∫∫=

A2 k( ) k
2

2π
------ Ts M

jkR–( )exp
R

---------------------------- s′d
Sap

∫∫
 
 
 • sd

Sap

∫∫–=

A3 k( ) 1
2π
------ Ts∇•( ) ∇′ M•( ) jkR–( )exp

R
---------------------------- s′d

Sap

∫∫
 
 
 

sd
Sap

∫∫=

b k( ) 2jωµo T n̂×( ) H incds•
Sap

∫∫=

Ts T n̂×=

Sap ∇′

ds′

H inc x̂Hxi ŷHyi ẑHzi+ +( ) e
jk i r•–

θ̂Hθi φ̂Hφi+ 
  e

jk i r•–
= =

Einc ηoH inc k i×=
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(11)

(12)

(13)

(14)

(15)

(16)

in which  is the free space intrinsic impedance and  represents the polarization angle of the

incident field. When , then  which corresponds to H-polarization and when

, then  which corresponds to E-polarization.

The matrix equation (3) is solved at any specific frequency,  (with wavenumber )

either by a direct method or by an iterative method. The solution of the equation (3) gives the

unknown electric field coefficients which are used to obtain the electric field distribution. Once

the electric field  is found and hence the magnetic current  on the aperture, the far zone

scattered field can be computed.

(17)

where  are the usual spherical coordinates of the observation point. The scattering cross

section is then given by

(18)

k i ko x̂ θi φicossin ŷ θi φisinsin ẑ θicos+ +[ ]–=

Hxi α θicossin φicos α φisincos+( ) ηo⁄=

Hyi α θi φisincossin α φicoscos–( ) ηo⁄=

Hzi α θisinsin–( ) ηo⁄=

Hθi H inc αsin=

Hφi H inc αcos=

ηo α

α 0= Hzi 0=

α π 2⁄= Ezi 0=

fo ko

E M

Hscat r( )
r ∞→

jko

ηo
------- e

jkor–

2πr
------------ θ̂θ̂ φ̂φ̂+( ) M x y,( ) e

jko θ x φcos y φsin+( )sin
dxdy•

Sa

∫∫–=

r θ φ, ,( )

σ 4πr
2 Hscat r( ) 2

H inc r( ) 2
----------------------------

r ∞→
lim=
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where
(19)

(20)

3. AWE Implementation

The RCS given in equation (18) is calculated at one frequency. If one needs RCS over a

frequency range, this calculation is to be repeated at different frequency values. Instead, AWE can

be applied to obtain the frequency response over a frequency range. The general implementation

of AWE for any frequency domain technique used for electromagnetic analysis is given in detail

in [19]. The solution of equation (3) gives the unknown electric field coefficient vector  at a

particular frequency . Instead  can be expanded in Taylor series as

(21)

with the moments  given by [19]

(22)

 is theqth derivative with respect tok of A(k) given in equation (4) and evaluated at .

Similarly,  is theqth derivative with respect tok of b(k) given in equation (9) and

evaluated at . The Kronecker delta  is defined as

(23)

Theqth derivatives ofA(k)andb(k) are evaluated and are given in detail in the Appendix.

Hscat r( ) 2
Hθs

2
Hφs

2
+=

H inc r( ) 2
Hθi

2
Hφi

2
+=

e ko( )

fo e k( )

e k( ) mn k ko–( ) n

n 0=

∞

∑=

mn

mn A
1–

ko( )
b

n( )
ko( )

n!
----------------------

1 δqo–( ) A
q( )

ko( ) mn q–

q!
-------------------------------------------------------------

q 0=

n

∑–=

A
q( )

ko( ) ko

b
q( )

ko( )

ko δqo

δqo

1 q 0=

0 q / 0=
{=
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In many cases, the Taylor series expansion gives fairly good results. However, the

accuracy of the Taylor series is limited by the radius of convergence. It will not converge to the

right answer beyond the radius of convergence, and it sometimes requires a large number of terms

to converge over a frequency range. In such cases, one may want to replace Taylor series

expansion with a rational function  called Pad  approximation [15] to improve the accuracy of

the numerical solution.

To obtain Pad  approximation, the Taylor series expansion in equation (21)  is matched

with a rational polynomial [15]

(24)

where

and

 is set to 1 as the rational function can be divided by an arbitrary constant. Since there are

(L+M+1)  unknowns,(L+M)  moments of the Taylor series should be matched. Equating the

coefficients for powers , the coefficients of  can be

obtained solving the matrix equation

(25)

e′

e′

mn k ko–( ) n

n 0=

∞

∑
PL k ko–( )
QM k ko–( )
-----------------------------=

PL k ko–( ) ao a1 k ko–( ) a2 k ko–( ) 2 …… aL k ko–( ) L
+ + + +=

QM k ko–( ) bo b1 k ko–( ) b2 k ko–( ) 2 …… bM k ko–( ) M
+ + + +=

bo

k ko–( ) L 1+ ……… k ko–( ) L M+
QM k ko–( )

mL M– 1+ mL M– 2+ … mL

mL M– 2+ mL M– 3+ … mL 1+

… … … …
mL mL 1+ … mL M 1–+

bM

bM 1–

…
b1

mL 1+

mL 2+

…
mL M+

–=
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The numerator coefficients can be found by equating the powers

Once the coefficients of the rational polynomial are obtained, equation (21) can be

rewritten as

(26)

For a given amount of computational effort, one can easily construct a rational

approximation which has smaller error than a polynomial approximation. Also for a fixed value of

L+M , the error is smallest whenL=M  or L=M+1 [17]. Using equation (26), the electric field

coefficients at frequencies around the expansion frequency are obtained. The electric field hence

obtained is used to compute the scattered magnetic field given in equation (17) and finally the

backscattering cross section using equation (18).

4. Numerical Results

To validate the analysis presented in the previous sections, a few examples are considered.

RCS calculations over a frequency range are done for a rectangular cavity, a circular cavity, and a

cavity filled with lossy material. The numerical data obtained using AWE are compared with the

results calculated at each frequency using the computer code CBS3DS [25], which implements

the combined FEM/MoM technique [14]. We will refer to the latter method as “exact solution.”

k ko–( ) 0……… k ko–( ) L

ao mo=

a1 m1 b1mo+=

a2 m2 b1m1 b2mo+ +=

aL mL bimL i–
i 1=

min L M,( )

∑+=

e k( )
ao a1 k ko–( ) a2 k ko–( ) 2 …… aL k ko–( ) L

+ + + +

1 b1 k ko–( ) b2 k ko–( ) 2 …… bM k ko–( ) M
+ + + +

--------------------------------------------------------------------------------------------------------------------------------=
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From section 3, it can be observed that the inverse of matrix  is found once and is used

repeatedly to find AWE moments. Due to the hybrid FEM/MoM technique, matrix  is

partly sparse and partly dense. The Complex Vector Sparse Solver (CVSS) [26] is used to LU

factor the matrix  once and the moments are obtained by backsolving equation (21) with

multiple righthand sides. All the computations reported below are done on a SGI-Indigo2 (with

150MHz, IP22 processor) computer.

(a) Square Cavity:  A square cavity in an infinite ground plane is considered (fig. 2 with

a=1cm, b=1cm, and c=2cm). Backscattering calculations are done with an incident angle

 and . The discretization of the square cavity resulted in 3590 total unknowns,

and the order of the dense matrix due to MoM is 133. Figure 3a shows the radar cross section

over the frequency range 15GHz to 25GHz, calculated using Taylor series for a H-polarized

incident wave. The Taylor series moments are calculated at 20GHz. Figure 3b shows the radar

cross section over the frequency range 15GHz to 25GHz calculated using Pad  approximation.

It can be seen from Figure 2b that Taylor series gave good results over the frequency range

18GHz to 22GHz. Beyond this frequency range, there is no improvement in accuracy, even by

adding more terms to the Taylor series. However, figure 3b indicates that Pad  approximation

gave good results over the frequency range 15GHz to 25GHz withL=5 and M=5, and well

behaved convergence is observed with increase in the orders of numerator and denominator of

Pad  approximation. The timings for the calculations performed using CBS3DS and Pad

approximations are given in Table 1. Note that the timings for Taylor series expansion and Pad

approximation are the same except for the cost of calculating Pad  coefficients from the Taylor

A ko( )

A ko( )

A ko( )

θ 0
o

= φ 0
o

=

e′

e′

e′ e′

e′

e′
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series coefficients. It is observed that the cost of generating moments and the Pade coefficients

is very minute compared to the cost of matrix generation and solution.

(b) Circular Cavity:A circular cavity (radius=0.305cm and height=0.3cm) in an infinite ground

plane is considered (fig. 4a). The discretization of the circular cavity resulted in 1327 total

unknowns, and the order of the dense matrix due to MoM is 132. Backscattering from this

cavity is calculated over the frequency range 10GHz to 50GHz with the incident angle

and  and plotted in Figure 4b. The Taylor series moments are calculated at 30GHz.

Taylor series expansion is calculated with five moments and the Pad  approximation is

calculated withL=3 and M=2. It can be seen that Pad  approximation could give accurate

results throughout the frequency range, whereas Taylor series gave accurate results only within

the frequency range 21GHz to 39GHz. The timings for calculation of backscattering cross

section using “exact method” and the Pad  approximation are given in Table 1.

(c) Rectangular cavity with lossy material:A rectangualr cavity is considered as another

example (fig. 2 witha=1cm, b=0.25cm, andc=0.25cm). The cavity is filled with lossy material

with dielectric  constants  and . The cavity is discretized using

tetrahedral elements resulting in 3218 unknowns. The order of the dense matrix due to MoM is

275. The backscatter cross section is calculated over the frequency range 10GHz to 50GHz with

the incident angle  and  and plotted in Figure 5a. The incident wave is assumed

to be H-polarized. Taylor series expansion is calculated with five moments at 30GHz and

accordingly the Pad  approximation is calculated withL=3 andM=2. It can be seen that Pad

approximation gave accurate results throughout the frequency range, whereas Taylor series gave

accurate results only within the frequency range 22GHz and 38GHz.  The backscattering cross

θ 0
o

=

φ 0
o

=

e′

e′

e′

εr 2.2 j1.5–= µr 1.8 j0.1–=

θ 0
o

= φ 0
o

=

e′ e′
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section calculations are also carried out for an E-polarized incident wave with incident angle

 and  and plotted in Figure 5b. Pad  approximation is calculated withL=5 and

M=4. Taylor series approximation is calculated with nine moments at 30GHz. It can be seen

even for this case that Pad  approximation gave accurate results throughout the frequency range

10GHz to 50GHz, whereas Taylor series is accurate only within the frequency range 20GHz to

38GHz. The timings for calculation of backscattering cross section using “exact method” and

the Pad  approximation are given in Table 1. The discretization for the “exact” calculations

using CBS3DS at frequency points beyond 40GHz resulted in 5848 unknowns and order of the

dense matrix due to MoM is 421. It can be noted that both Taylor series and Pad

approximation are evaluated at 30GHz and hence the dicretization that is used at 30GHz is

accurate enough to calculate the hybrid FEM-MoM matrix and the derivative matrices. The

results obtained using Pad  approximation show a good agreement with the “exact” calculations

with denser gridding even beyond 40GHz.

Comment on Storage: In all the above examples, when solving a matrix equation, one needs to

store the matrix   for exact solution at each frequency. Fornth order AWE, one needs to

store n number of  matrices ( ,q=1,2,3,...n), along with the matrix . For

electrically large problems, this could impose a burden on computer resources. This problem can

be overcome by storing the derivative matrices,  out-of-core, as the derivative matrices

are required only for matrix-vector multiplication.

θ 0
o

= φ 0
o

= e′

e′

e′

e′

e′

A ko( )

A
q( )

ko( ) A ko( )

A
q( )

ko( )
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Table 1: Comparison of CPU timings for the numerical examples presented in Sections  4a, b
and c

Problem Method
Matrix Fill

(secs)
LU Factor

(secs)

Total
Time
(secs)

(a) Rectangular
     cavity

(a=1cm, b=0.5cm,
      c=0.5cm)

CBS3DS
(13 freq. points)

2081.7 312.0 2393.7

Pad (L=5,
M=5)

(100 freq. points)

354.7 25.0 379.7

(b) Circular cavity
(radius=0.305cm,

       height=0.3cm)

CBS3DS
(41 freq. points)

6342.7 270.60 6613.3

Pad (L=3,M=2)
(400 freq. points)

323.7 6.64 330.34

(c) Material filled
     rectangular
     Cavity

(a=1cm,b=0.25cm,

        c=0.25cm)

CBS3DS
(41 freq. points)

19526.9
  (10GHz-40GHz)

+
14880.0

(41GHz-50GHz)

1110.73
 (10GHz-40GHz)

+
1413.5

(41GHz-50GHz)

37021.13

Pad (L=3,M=2)
(400 freq. points)

 (H-Pol)

1330.1 34.67 1364.77

Pad (L=5,M=4)
(400 freq. points)

(E-Pol)

1429.21 34.67 1463.88

e′

e′

e′

e′
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5. Concluding Remarks

The AWE technique is applied to the hybrid FEM/MoM technique to calculate the radar

cross section of a cavity-backed aperture over a frequency range. Examples of a rectangular

cavity, a circular cavity, and a material filled cavity are considered to validate the analysis. Both

Taylor series approximation and Pad  approximation are calculated for all the examples. It can

be noted that for the same computational effort, the Pad  approximation proved to be superior

in terms of  wider bandwidth. Timing comparisons are  done for calculating radar cross section

over a frequency range using AWE and using ‘exact’ calculation at each frequency point. AWE

is found to be superior in terms of the CPU time. It may be noted that although calculations are

done in frequency increments of 0.1GHz for eamples presented in this paper, frequency

response  at even finer increments can also be calculated at a very nominal cost. This is

particularly important when there are sharp nulls present in the frequency response.
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Appendix

Derivatives ofA(k) and b(k) w.r.t.  k

The frequency derivatives ofA(k) and b(k) are evaluated and are given below. From

equation (4):

q=0,1,2,3,........ (A.1)

From equation (5)

(A.2)

(A.3)

(A.4)

(A.5)

From equation (6)

(A.6)

(A.7)

for q>1(A.8)

A
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k( ) d
q
A k( )

dk
q
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q( )
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∫∫∫ k

2
– εr T Edv•

V
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A1
1( )

k( ) 2k– εr T Edv•
V
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A1
2( )

k( ) 2– εr T Edv•
V
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Sap
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 
 • sd

Sap
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A2
1( )

k( ) Ts M
j

2π
------ 

  2k k
2

jR–( )+
jkR–( )exp

jR–( )
---------------------------- s′d

Sap

∫∫
 
 
 • sd

Sap

∫∫=

A2
q( )

k( ) Ts M
j

2π
------ 

  q!
q 2–( ) !

-------------------- jR–( ) q 3–
2qk jR–( ) q 2–

k
2

jR–( ) q 1–
+ + jkR–( )exp s′d

Sap

∫∫
 
 
 • sd

Sap

∫∫=
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From equation (7)

(A.9)

(A.10)

From equation (8)

(A.11)

Noting from equation (9) that

(A.12)

where

and

Equation (A.11) can be rewritten as

(A.13)

A3
0( )

k( ) 1
2π
------ Ts∇•( ) ∇′ M•( ) jkR–( )exp

R
---------------------------- s′d

Sap

∫∫
 
 
 

sd
Sap

∫∫=

A3
q( )

k( ) Ts∇•( ) ∇′ M•( ) j
2π
------– 

  jR–( ) q 1–( )
jkR–( )exp s′d

Sap

∫∫{ } sd
Sap

∫∫=

b
0( )

k( ) 2jωµo T n̂×( ) H incds•
Sap

∫∫=

H inc H ie
jk x1 y1 z1+ +( )

=

H i x̂Hxi ŷHyi ẑHzi+ +=

x1 x θi φicossin=

y1 y θi φisinsin=

z1 z θicos=

b
0( )

k( ) 2jkηo T n̂×( ) H ie
jk x1 y1 z1+ +( )

• sd
Sap

∫∫=
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For

                                + (A.14)

q 0≠

b
q( )

k( ) d
q
b k( )

dk
q

------------------ 2q j( ) qηo T n̂×( ) H i x1 y1 z1+ +( ) q 1–( )
e

jk x1 y1 z1+ +( )
• sd

Sap

∫∫= =

2kηo j( ) q 1+
T n̂×( ) H i x1 y1 z1+ +( ) q

e
jk x1 y1 z1+ +( )

• sd
Sap
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Figure 1 Geometry of a cavity-backed arbitrarily shaped aperture in an infinite ground plane.
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Fig. 2  Geometry of the rectangular cavity backed aperture.
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Figure 3a Frequency response calculation for the rectangular cavity shown in figure 2 (a=1cm,
b=1cm, c=2cm,εr=1.0, µr=1.0) using Taylor series approximation.
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Figure 3b Frequency response calculation for the rectangular cavity shown in figure 2 (a=1cm,

b=1cm, c=2cm,εr=1.0, µr=1.0) using Pad  approximation.
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Figure 4. Frequency response calculations of back scattering from an air-filled circular cavity.
              (a) Geometry of the circular cavity (b) Backscattering cross section versus frequency.
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Figure 5a Frequency response calculation for the rectangular cavity shown in figure 2 (a=1cm,
b=0.25cm, c=0.25cm,εr=2.2-j1.5,µr=1.8-j0.1). H-Polarization
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Figure 5b Frequency response calculation for the rectangular cavity shown in figure 2 (a=1cm,
b=0.25cm, c=0.25cm,εr=2.2-j1.5,µr=1.8-j0.1). E-Polarization.
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